
1

16.31 Final Project Paper: Minimum-Snap
Trajectory Generator with Error-State LQR Control

of a Quadrotor MAV
Andrew Torgesen

Abstract—In an attempt to increase the agility of the Parrot
Mambo quadrotor platform in tracking smooth, continuously
varying position trajectories, the Simulink flight control system is
augmented with a full-state trajectory generator, error-state LQR
controller, and an updated attitude controller. The trajectory
generator, which takes advantage of the differential flatness of
multirotor dynamics, is able to generate a full-state trajectory
from position, velocity, acceleration, and jerk commands. The
error-state LQR and attitude controllers allow the quadrotor to
follow the generated reference trajectory with greater accuracy
than the default Simulink flight control system for the Parrot
Mambo. Explanations and derivations for the Lie derivatives
used for the error-state LQR are given. Simulation and hardware
results are used to validate the performance of the augmented
flight control system.

I. INTRODUCTION

Experience has shown that quadrotor flight routines such as
waypoint tracking can be satisfactorily executed with position
and orientation-based successive loop closure. However, more
acrobatic flight maneuvers which track continuous reference
trajectories are better served with a control scheme that goes
beyond purely position-based control.

Quadrotor flight performance for continuously varying tra-
jectories is highly dependent on “supplementary” reference
commands which leverage the quadrotor dynamics themselves.
When reference trajectories are generated which take accel-
eration and jerk into account, for example, more agility is
afforded as the time derivative of position encodes a sort
of “anticipation” of the subsequent commanded change in
position in the next step of the trajectory. Moreover, it will
be shown in this paper that a set of commanded positions,
velocities, accelerations, and jerks can be translated into a full-
state trajectory command that, when tracked by a quadrotor,
achieves the desired time derivatives of position while mini-
mizing snap.

Full-state trajectory commands naturally lend themselves to
tracking with a full-state feedback controller. Linear quadratic
regulation, or LQR, is the optimal full-state feedback con-
troller for linear systems. Quadrotor dynamics are inherently
nonlinear, though they can be linearized and treated as a linear
system if the state does not stray too far from the linearization
point. This project considers an alternative formulation for
the dynamics by expressing them in terms of the error-state.
Interestingly, error-state dynamics are linear, and can thus be
more soundly controlled by LQR. In order to derive an error-
state LQR controller, however, some background in Lie theory

is required. This paper delves into the relevant Lie theory and
error-state LQR controller derivation.

This paper leverages the concepts of full-state trajectory
generation and error-state LQR to augment the Parrot Mambo
Simulink control system for more agile smooth trajectory
tracking. The three main augmentations to the flight control
system are visualized in Figure 1. Together, they consist what
will be referred to as a full-state Trajectory Generator and
Error-state LQR controller (TG-ELQR).

Figure 1: TG-ELQR architecture. The flight control system
takes as input commands a reference position, velocity, accel-
eration, and jerk, and outputs commanded body torques and
thrust for more acrobatic flight.

Section II gives a brief overview of related work whose re-
sults pertain to the various flight control system augmentations
presented in this paper. Section III derives the equations for
the minimum-snap trajectory generator. Subsequently, Section
IV derives the linear error-state dynamics after reviewing
the minimum requisite Lie theory. Section V discusses the
modifications made to the representation and control methods
for attitude in Simulink, and Sections VI and VII communicate
the results and conclusions to be drawn from simulation and
hardware testing of the TG-ELQR control system.

II. RELATED WORK

The algorithms that are synthesized together in this paper
come from the work of many different sources in the robotics
community. A summary of those sources and their context
within control theory is given in this section.

The concept of differential flatness is both explained and
utilized for full-state trajectory generation in [9], [6]. It is
a well-known phenomenon that is often used in multirotor
control. The minimum-snap trajectory generator used in this
paper is inspired by the work laid out in [6], [2].

Lie theory, which is used in the derivation of the error-
state LQR, constitutes an incredibly vast body of work, and
is utilized in physics and general nonlinear theory [8]. In the
realm of robotics, a small subset of the theory is increasingly
used for state estimation–especially in conjunction with visual-
inertial odometry (VIO) applications [7], [3]. This can be



2

ā

ȧ

	
ω

θ

Figure 2: Illustration of the key state quantities involved in
using differential flatness to derive commanded orientation
and angular velocity from acceleration and jerk, respectively.
Here, ā is defined as the difference between gravity and the
commanded acceleration: g − a.

attributed to the theory’s ability to seamlessly integrate and
calculate derivatives of affine transformations [1], [5].

Despite the increasing use of Lie theory in state estimation,
there are more limited examples of its application to Control
theory. While there are examples of theoretical exercises in
classical and optimal control using Lie algebras, as in [10],
to the author’s knowledge there is only one example of Lie
theory being used to formulate an error-state LQR, found in
[2].

There is a vast body of literature on different methods
for effective and robust attitude control on aerial platforms;
this paper utilizes the approach for quaternion-based attitude
control laid out in [4].

III. TRAJECTORY GENERATOR DERIVATION

As can be seen from Figure 1, the trajectory generator
must take as inputs the commanded position p, velocity v,
acceleration a, and jerk ȧ, all expressed in the inertial frame
of reference. These specific inputs are chosen because of
the concept of differential flatness that applies to quadrotors,
which states that given the four “differentially flat” variables
of three-dimensional position and yaw (and their derivatives),
all other states can be algebraically derived. In this paper, yaw
is commanded to be zero throughout the entire trajectory, so
it is not considered.

Given the inputs to the trajectory generator, the quanti-
ties of commanded thrust F , attitude qbI , and angular rate
ωb
b/I =

[
p q r

]T
must be derived. The calculation of thrust

is relatively straightforward, given the difference between the
gravity vector and the commanded acceleration, ā , g − a:

F = m||ā|| (1)

which can be intuited as relating thrust to the required force
to achieve the magnitude of the desired acceleration, which at
a minimum must counteract freefall.

Figure 2 gives some intuition for the calculation of attitude
and angular rate. Essentially, because a quadrotor’s thrust can
only be applied straight out of the top of the vehicle body, any
resultant acceleration vector will be aligned with the desired
vehicle attitude. As a logical extension, the change in the
acceleration vector (encoded by jerk) is directly related to the
change in vehicle attitude (encoded by the commanded angular
velocity). Given the elementary basis vectors e1, e2, e3, these
relationships are expressed as:

θ = cos−1(eT3
ā

||ā||
) (2)

qbI = Expq(θ[e3]×
a

||a||
) (3)

for the relationship between ā and q̄bI (note the use of
the geodesic exponential map operator Expq(·)–that will be
expanded on in the section on Lie derivatives), and

hω =
ȧ− (((Rb

I)T e3)T ȧ)

||g − ā||
(Rb

I)T e3 (4)

p = hTω (Rb
I)T e2 (5)

q = −hTω (Rb
I)T e1 (6)

r = 0 (7)

for the relationship between ȧ and ωb
b/I . Equations 1-

7 constitute the trajectory generation algorithm, feeding a
reference state and reference thrust into the error-state LQR.

IV. CONTROLLER DERIVATION

The error-state LQR controller is akin to normal LQR, with
a few quirks. First, the state vector is defined as x̃ = x 	 x̌,
such that x̃ (or the error-state) exists in the tangent space of the
manifold that defines the state x. Additionally, the A and B
state space matrices come from the Jacobians of the error-
state dynamics, rather than the nominal dynamics. Finally,
Jacobians are calculated from the standard definition of the
derivative, substituting the plus and minus operators with ⊕
and 	, respectively. The following sections will walk through
the requisite steps to arrive at the final controller.

A. Quadrotor Dynamics

The quadrotor state at each time step is defined to consist
the vehicle’s position, translational velocity, and orientation:

x =
[
pIb/I vbb/I qbI

]T
∈ R6 × S3, (8)

and the input to the system consists the commanded thrust
and angular rates:

u =
[
F p q r

]T ∈ R4. (9)

The quadrotor dynamic model from input u to state evolu-
tion ẋ used in the derivation of the error-state LQR controller
is based on various simplifying assumptions:
• The dynamics between the actual and commanded angu-

lar rate ωb
b/I , governed principally by motor dynamics,

are effectively instantaneous. This allows for ωb
b/I to be

considered as part of the input to the quadrotor plant.
• Aerodynamic drag is non-existent. This assumption is

admissible for small aircraft at low relative air speeds.
• Thrust is linearly related to the throttle command.



3

Further, while the attitude portion of the state vector is
represented by the quaternion qbI ∈ S3, the rotation matrix
version of the attitude Rb

I ∈ SO(3) will be used in the
formulation of the dynamics when the attitude is being used
to transform vectors, for simplicity.

The evolution of the MAV state vector x given the input u,
then, can be expressed as

ẋ =

ṗIb/Iv̇bb/I
q̇bI

 =


(Rb

I)T vbb/I
gRb

Ie3 − F
me3 − [ωb

b/I ]×v
b
b/I

qbI ⊗
(

0
1
2ω

b
b/I

)


= f(x, u).

(10)

The above formulation for f(x, u) will be very useful
in deriving the error-state dynamics, whose state the LQR
controller will attempt to drive to zero.

B. Lie Derivatives

Prior to continuing with deriving the error-state version of
the quadrotor dynamics, it is necessary to give some brief
background on fundamental topics from Lie theory. Lie theory
deals with the mathematics of doing calculus on manifolds,
which do not adhere to the rules of vector spaces yet locally
look like vector spaces. The theory is relevant to the TG-
ELQR controller because of the fact that the attitude of
rigid bodies (represented by the quaternion qbI in this paper)
cannot be represented as a vector. This fact is intuitive once
one considers the non-commutativity of three-dimensional
rotations, as well as the observation that attitude cannot be
uniquely expressed as a weighted sum of three basis vectors.
In fact, attitude exists and evolves on a manifold. Because the
state vector of the dynamics includes attitude, the need arises
to do calculus on manifolds in order to define the error state
and to calculate Jacobians of the error-state dynamics.

Lie theory facilitates calculus on manifolds by providing the
following:
• A bi-directional geodesic mapping between a manifold,
M, and a space tangent to it, TXM, which is a vector
space. The map from the tangent space to the manifold
is called the exponential map, and the map from the
manifold to the tangent space is called the logarithmic
map.

• A method for adding a tangent-space vector to a manifold
quantity with the ⊕ operator to obtain a new manifold
quantity.

• A method for subtracting manifold quantities with the 	
operator to compute a tangent-space vector representing
their difference.

These three concepts can be intuitively understood by
considering the scenarios given in Figures 3 and 4. For
each scenario, the goal is to define the addition operation to
incrementally evolve an object on a manifold. In the non-trivial
case where the manifold curves away from its tangent space
as one moves away from the tangent point (as is the case for
quaternions and other attitude representations), it is apparent
that the addition operation requires a geodesic mapping from

M↔ TIRnM
x1

x2
∆x

Figure 3: Illustration of the operation of adding a “tangent
space" element ∆x ∈ TRnM to the “manifold" quantity x1 ∈
M to obtain the new quantity x2 on the “manifold." The words
“tangent space" and “manifold" are expressed in quotes here
because the manifold in question is really just a vector space,
making x1 and x2 vectors along with ∆x. When the manifold
is a vector space, its corresponding tangent space is the same
everywhere, and is also a vector space (the same vector space
as the one x1 and x2 belong to, in fact). Thus, the composition
of x1 and ∆x simplifies down to the familiar operation of
vector addition.

TX1M

M

X1

X2

∆x

Figure 4: Illustration of the operation of adding the tangent
space vector ∆x ∈ TX1M to the manifold quantity X1 to
obtain the new quantity X2 on the manifold. Contrasted with
the scenario in Figure 3, this time X1 does not live in a vector
space, and thus is not a vector. The incremental quantity ∆x,
however, lives in a tangent vector space which is tangent to
M precisely at X1, and thus is still a vector. There exists an
operation for composing X1 and ∆x to obtain X2, but this
time it is not as simple as vector addition.

the tangent space to the manifold. Without getting into the
details of the geodesic mapping, a new, more general addition
operation is defined, ⊕:

X1 ⊕∆x = X2 (11)

which encompasses the operation expressed in Figure 4 by
composing a manifold quantity with a vector before mapping
the result back onto the manifold. There exists a corresponding
generalized subtraction operation, 	:

X2 	X1 = ∆x (12)

which undoes the ⊕ operation by expressing the difference
between the two manifold quantities X1 and X2 as the vector
∆x, which lives in the tangent space to the manifold at X1,
or TX1

M.
With the ⊕ and 	 operations defined, one can redefine the

definition of the derivative to a more general form (referred to



4

as the Lie derivative) that works for functions of both vector
and manifold quantities:

∂f

∂X
= lim

∆x→0

f(X ⊕∆x)	 f(X )

∆x
(13)

Equations 11-13 are utilized subsequently to define the
error-state, the error-state dynamics, and the Jacobians of the
error-state.

C. Error-State Dynamics

Because the objective is to control off the error between
the current and commanded states directly, it is necessary to
define both the quadrotor error-state as well as the dynamics
associated with the error-state. In turn, the state space model
used to calculate the LQR gains will be derived by linearizing
the error-state dynamic model, not the nominal dynamics
defined in Equation 10.

The error-state is nothing more than the (generalized) dif-
ference between the nominal state, x, and the desired state,
x̌:

x̃ = x	 x̌ (14)

It is important to note that x̃ (and even its attitude com-
ponent, q̃bI ) is a proper vector, due to the afforementioned
properties of the 	 operator. Using Equations 14 and 10, the
error-state dynamics can be derived by careful handling of the
⊕ and 	 operations:

˙̃x =

 (Rb
I)T ṽbb/I − (Rb

I)T [vbb/I ]×r̃
b
I

g[Rb
Ie3]×r̃

b
I − F̃

me3 − [ωb
b/I ]×ṽ

b
b/I + [vbb/I ]×ω̃

b
b/I

˙̃rbI = ω̃b
b/I − [ωb

b/I ]×r̃
b
I


= F (x̃, x, u).

(15)
From Equation 15, the Jacobian matrices A and B can be

calculated for the derivation of the LQR gain matrix, K.

D. LQR Formulation

As implied in Equation 13, the calculation of Jacobians for
the error-state dynamics F (x̃, x, u) involves careful handling
of the generalized addition and subtraction operators. A brief
example of taking such a derivative (which contributes to the
Jacobian ∂F/∂q̃ ∈ A) is shown below:

∂(Rb
I)T ṽbb/I

∂q̃bI
= lim

q̃bI→0

((Rb
I)T ⊕ q̃bI)ṽbb/I − (Rb

I)T ṽbb/I

q̃bI
(16)

= lim
q̃bI→0

((Rb
I)T Exp(Jr(qIb )q̃bI)− (Rb

I)T )ṽbb/I

q̃bI
(17)

= lim
q̃bI→0

((Rb
I)T (I + [Jr(qIb )q̃bI ]×)− (Rb

I)T )ṽbb/I

q̃bI
(18)

= lim
q̃bI→0

(Rb
I)T [Jr(qIb )q̃bI ]×ṽ

b
b/I

q̃bI
(19)

= lim
q̃bI→0

−
(Rb

I)T [ṽbb/I ]×Jr(qIb )q̃bI

q̃bI
(20)

= −(Rb
I)T [ṽbb/I ]×Jr(qIb ), (21)

where Jr(qIb ) , ∂(RI
b)T /∂q̃bI is the Lie derivative of a

rotation matrix with respect to the error quaternion, which
is approximately the identity matrix when qIb is close to the
identity rotation. This example shows how, due to the nature
of the ⊕ operator, the exponential map Exp(·) (which is the
geodesic mapping between the tangent space and the manifold
mentioned earlier) must be utilized. A full derivation of all
Jacobian terms will not be given in this paper. Instead, the
final results will be given:

A =

0 ∂ ˙̃p
∂ṽ

∂ ˙̃p
∂q̃

0 ∂ ˙̃v
∂ṽ

∂ ˙̃v
∂q̃

0 0 ∂ ˙̃q
∂q̃

 , B =

 0 0
∂ ˙̃v
∂F̃

∂ ˙̃v
∂ω̃

0 ∂ ˙̃q
∂ω̃

 (22)

∂ ˙̃p

∂ṽ
= (Rb

I)T (23)

∂ ˙̃p

∂q̃
= −(Rb

I)T [vbb/I ]× (24)

∂ ˙̃v

∂ṽ
= −[ωb

b/I ]× (25)

∂ ˙̃v

∂q̃
= [gRb

Ie3]× (26)

∂ ˙̃q

∂q̃
= −[ωb

b/I ]× (27)

∂ ˙̃v

∂F̃
= − 1

m
e3 (28)

∂ ˙̃v

∂ω̃
= [vbb/I ]× (29)

∂ ˙̃q

∂ω̃
= I (30)

Equations 22-30 are evaluated at hover conditions (v̄ = 0,
ω̄ = 0, R̄ = I) to compute the error-state space matrices. With
the A and B matrices, the LQR controller gains can finally



5

be derived. For this paper, the components of the error-state
and input are weighted according to Bryson’s Rule, with the
following maximum allowable errors:
• X-Position: 2.0
• Y-Position: 2.0
• Z-Position: 1.0
• u-Velocity: 100.0
• v-Velocity: 100.0
• w-Velocity: 2.4
• Angular: 2.0
• Angular Velocity: 2.0
• Throttle: 0.5

and the K gain matrix for the LQR control u = ū − Kx̃ is
calculated from (A,B,Q,R) using the Matlab lqr command.

V. ATTITUDE REPRESENTATION AND CONTROL

As is apparent from Sections III and IV, this paper not
only uses quaternions to represent attitude, but also uses the
manifold-specific ⊕ and 	 operators to increment and differ-
ence them. Matlab and Simulink have no built-in support for
these operations, so a custom Matlab quaternion library was
written for the TG-ELQR Simulink implementation. The li-
brary can be found at https://github.com/goromal/matlab-utils.

Additionally, by inspecting the Attitude Controller block in
Figure 1, the Simulink attitude control for the Parrot Mambo
was modified to control off of both a quaternion and the
commanded angular rate coming from the error-state LQR.
Because of how the TG-ELQR is formulated, the input angular
rate ω to the attitude controller is dependent on the trajectory
error, whereas the input quaternion q is not. This disparity,
while unfortunate, becomes increasingly less relevant as the
quadrotor gets closer to the desired trajectory. The modified
attitude controller, from [4], is formulated as

qe = qbI ⊗ q (31)

[
τx τy τz

]T
= −sgn(q̄e)KP ~qe −KD(ωb

b/I − ω) (32)

which is essentially PD control using a quaternion. In
Equation 32, q̄e is the real part of the error quaternion and ~qe is
the imaginary part. The use of the signum function ensures that
there is no ambiguity in the direction of the applied control,
just in case qe is formulated differently across time steps (a
phenomenon made possible by the quaternion group’s double
coverage of the 3D rotation group, as discussed in [3]).

VI. RESULTS

A time-dependent lemniscate trajectory command which
also varies sinusoidally in height is used as a benchmark
on which to gauge the relative performance of the TG-
ELQR controller. First, a comparison is made between the
benchmark tracking performance of the TG-ELQR controller
and the default Simulink controller for the Parrot Mambo in
simulation. The stability and performance of the TG-ELQR
controller is then validated with hardware testing. An in-depth
analysis of the results is given in Section VII.

A. Simulation

Figures 5 and 6 give representative tracking performances
for the default Simulink controller and the TG-ELQR con-
troller, respectively. The difficulty of the default controller
in converging on the trajectory is notable–particular difficulty
arises when all three positional degrees of freedom command
an acceleration. The TG-ELQR controller, on the other hand,
handles these acceleration commands well without appearing
to diverge from the trajectory over time.

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1

N
o
rt

h
 (

m
)

0 5 10 15 20 25 30
-2

-1

0

1

2

E
a
st

 (
m

)

0 5 10 15 20 25 30
time (s)

-4

-3

-2

-1

0

D
o
w

n
 (

m
)

Figure 5: Default controller tracking in simulation.

0 5 10 15 20 25 30
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

N
o
rt

h
 (

m
)

0 5 10 15 20 25 30
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

E
a
st

 (
m

)

0 5 10 15 20 25 30
time (s)

-2.5

-2

-1.5

-1

-0.5

0

D
o
w

n
 (

m
)

Figure 6: TG-ELQR controller tracking in simulation.

Figure 7 elucidates the gap in performance between the
TG-ELQR and default controllers. Instead of simply trying to
follow a position trajectory with non-zero acceleration and jerk
based on position commands alone, the TG-ELQR controller
calculates and follows a full-state command which is able to
implicitly encode the acceleration and jerk in the commanded
trajectory.

B. Hardware

To validate the stability and relative robustness of the
TG-ELQR controller, the simulation benchmark scenario is
replicated in a flight on the Parrot Mambo hardware platform
itself. Due to the pre-calculation of the LQR gains and the



6

Figure 7: TG-ELQR tracking performance for all states generated by the minimum-snap trajectory generator. Pictured, in
addition to the position tracking performance visible in Figure 6, are all of the commanded states that are implicitly necessary
to track in order to achieve agile flight performance.

building of the code base from the ground-up, the TG-ELQR
augmentation is able to compile and transfer directly to the
Mambo’s onboard computer. The resulting flight tracking
performance is given in Figure 8. Though there is a noticeable
degradation in performance compared to in simulation, the
controller is still able to follow the commanded trajectory
without struggling with commanded accelerations or drifting
over time.

0 5 10 15 20 25 30

-0.2

0

0.2

0.4

0.6

N
o
rt

h
 (

m
)

0 5 10 15 20 25 30
-0.5

0

0.5

E
a
st

 (
m

)

0 5 10 15 20 25 30
Time (s)

-2

-1.5

-1

-0.5

0

D
o
w

n
 (

m
)

x
xc

Figure 8: TG-ELQR tracking performance in hardware.

VII. CONCLUSIONS

The superior tracking performance of the TG-ELQR con-
troller points to the fact that the default controller for the
Parrot Mambo is designed to achieve good performance in
tracking step commands or waypoints, and not a continuously
varying position command. The TG-ELQR controller, on the
other hand, is able to convert smoothly varying position
(and yaw) commands to full-state commands that can be
efficiently tracked with full-state feedback for more agile
flight performance. Instead of constantly trying to drive the
system to a level attitude, the error-state LQR is able to
drive the state to commanded non-zero angular values by
modulating the commanded thrust and angular rates. In a
future iteration, a more advanced attitude control method (such
as feedback linearization) could be used to attain still more
agile performance.

Comparison between the simulation and hardware results
clearly shows that hardware tracking, while still adequate, is
still very much subject to disturbances and modeling errors
in the absence of integral control–especially in altitude. Per-
formance could be improved by adding an integrator term,
as is often done will full-state feedback controllers. It is also
possible that the hardware system suffers from insufficiently
aggressive error-state LQR gains, though the process of finding
a good balance of error-state LQR weights can be difficult
given the inherent physical limitations of the Parrot Mambo
platform. That being said, the author is impressed by the
relative versatility and ease-of-use of the Mambo, and certainly
plans to take on future projects (for amusement’s sake) with
the minidrone in the future.

REFERENCES

[1] Tom Drummond and Roberto Cipolla. Visual tracking and control using
lie algebras. In Proceedings. 1999 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (Cat. No PR00149),
volume 2, pages 652–657. IEEE, 1999.

[2] Michael Farrell, James Jackson, Jerel Nielsen, Craig Bidstrup, and Tim
McLain. Error-state lqr control of a multirotor uav. pages 704–711, 06
2019.

[3] Wendelin Feiten, Pradeep Atwal, Robert Eidenberger, and Thilo Grund-
mann. 6d pose uncertainty in robotic perception. In Advances in Robotics
Research, pages 89–98. Springer, 2009.

[4] Jonathan P. How, Emilio Frazzoli, and Girish Vinayak Chowdhary.
Linear Flight Control Techniques for Unmanned Aerial Vehicles, pages
529–576. Springer Netherlands, Dordrecht, 2015.

[5] Venkatesh Madyastha, Vishal Ravindra, Srinath Mallikarjunan, and
Anup Goyal. Extended kalman filter vs. error state kalman filter for
aircraft attitude estimation. In AIAA Guidance, Navigation, and Control
Conference, page 6615, 2011.

[6] D. Mellinger and V. Kumar. Minimum snap trajectory generation and
control for quadrotors. In 2011 IEEE International Conference on
Robotics and Automation, pages 2520–2525, May 2011.

[7] Joan Solà. Quaternion kinematics for the error-state kalman filter. CoRR,
abs/1711.02508, 2017.

[8] Joan Solà, Jérémie Deray, and Dinesh Atchuthan. A micro lie theory
for state estimation in robotics. CoRR, abs/1812.01537, 2018.

[9] E. Tal and S. Karaman. Accurate tracking of aggressive quadrotor tra-
jectories using incremental nonlinear dynamic inversion and differential
flatness. In 2018 IEEE Conference on Decision and Control (CDC),
pages 4282–4288, Dec 2018.

[10] Zhifei Zhang, Alain Sarlette, and Zhihao Ling. Integral control on lie
groups. Systems & Control Letters, 80:9–15, 2015.


